1,039 research outputs found

    Rostro-caudal networks for sound processing in the primate brain

    Get PDF
    Sound is processed in primate brains along anatomically and functionally distinct streams: this pattern can be seen in both human and non-human primates. We have previously proposed a general auditory processing framework in which these different perceptual profiles are associated with different computational characteristics. In this paper we consider how recent work supports our framework

    Listeners are sensitive to the speech breathing time series: Evidence from a gap detection task

    Get PDF
    The effect of non-speech sounds, such as breathing noise, on the perception of speech timing is currently unclear. In this paper we report the results of three studies investigating participants' ability to detect a silent gap located adjacent to breath sounds during naturalistic speech. Experiment 1 (n = 24, in-person) asked whether participants could either detect or locate a silent gap that was added adjacent to breath sounds during speech. In Experiment 2 (n = 182; online), we investigated whether different placements within an utterance were more likely to elicit successful detection of gaps. In Experiment 3 (n = 102; online), we manipulated the breath sounds themselves to examine the effect of breath-specific characteristics on gap identification. Across the study, we document consistent effects of gap duration, as well as gap placement. Moreover, in Experiment 2, whether a gap was positioned before or after an interjected breath significantly predicted accuracy as well as the duration threshold at which gaps were detected, suggesting that nonverbal aspects of audible speech production specifically shape listeners' temporal expectations. We also describe the influences of the breath sounds themselves, as well as the surrounding speech context, that can disrupt objective gap detection performance. We conclude by contextualising our findings within the literature, arguing that the verbal acoustic signal is not "speech itself" per se, but rather one part of an integrated percept that includes speech-related respiration, which could be more fully explored in speech perception studies

    Native-language benefit for understanding speech-in-noise: The contribution of semantics

    Get PDF
    Bilinguals are better able to perceive speech-in-noise in their native compared to their non-native language. This benefit is thought to be due to greater use of higher-level, linguistic context in the native language. Previous studies showing this have used sentences and do not allow us to determine which level of language contributes to this context benefit. Here, we used a new paradigm that isolates the semantic level of speech, in both languages of bilinguals. Results revealed that in the native language, a semantically related target word facilitates the perception of a previously presented degraded prime word relative to when a semantically unrelated target follows the prime, suggesting a specific contribution of semantics to the native language context benefit. We also found the reverse in the non-native language, where there was a disadvantage of semantic context on word recognition, suggesting that such top-down, contextual information results in semantic interference in one's second languag

    Impaired generalization of speaker identity in the perception of familiar and unfamiliar voices

    Get PDF
    In 2 behavioral experiments, we explored how the extraction of identity-related information from familiar and unfamiliar voices is affected by naturally occurring vocal flexibility and variability, introduced by different types of vocalizations and levels of volitional control during production. In a first experiment, participants performed a speaker discrimination task on vowels, volitional (acted) laughter, and spontaneous (authentic) laughter from 5 unfamiliar speakers. We found that performance was significantly impaired for spontaneous laughter, a vocalization produced under reduced volitional control. We additionally found that the detection of identity-related information fails to generalize across different types of nonverbal vocalizations (e.g., laughter vs. vowels) and across mismatches in volitional control within vocalization pairs (e.g., volitional laughter vs. spontaneous laughter), with performance levels indicating an inability to discriminate between speakers. In a second experiment, we explored whether personal familiarity with the speakers would afford greater accuracy and better generalization of identity perception. Using new stimuli, we largely replicated our previous findings: whereas familiarity afforded a consistent performance advantage for speaker discriminations, the experimental manipulations impaired performance to similar extents for familiar and unfamiliar listener groups. We discuss our findings with reference to prototype-based models of voice processing and suggest potential underlying mechanisms and representations of familiar and unfamiliar voice perception. (PsycINFO Database Record (c) 2016 APA, all rights reserved

    Suppressing sensorimotor activity modulates the discrimination of auditory emotions but not speaker identity

    Get PDF
    Our ability to recognize the emotions of others is a crucial feature of human social cognition. Functional neuroimaging studies indicate that activity in sensorimotor cortices is evoked during the perception of emotion. In the visual domain, right somatosensory cortex activity has been shown to be critical for facial emotion recognition. However, the importance of sensorimotor representations in modalities outside of vision remains unknown. Here we use continuous theta-burst transcranial magnetic stimulation (cTBS) to investigate whether neural activity in the right postcentral gyrus (rPoG) and right lateral premotor cortex (rPM) is involved in nonverbal auditory emotion recognition. Three groups of participants completed same-different tasks on auditory stimuli, discriminating between the emotion expressed and the speakers' identities, before and following cTBS targeted at rPoG, rPM, or the vertex (control site). A task-selective deficit in auditory emotion discrimination was observed. Stimulation to rPoG and rPM resulted in a disruption of participants' abilities to discriminate emotion, but not identity, from vocal signals. These findings suggest that sensorimotor activity may be a modality-independent mechanism which aids emotion discrimination. Copyright © 2010 the authors

    Group and individual variability in speech production networks during delayed auditory feedback

    Get PDF
    Altering reafferent sensory information can have a profound effect on motor output. Introducing a short delay [delayed auditory feedback (DAF)] during speech production results in modulations of voice and loudness, and produces a range of speech dysfluencies. The ability of speakers to resist the effects of delayed feedback is variable yet it is unclear what neural processes underlie differences in susceptibility to DAF. Here, susceptibility to DAF is investigated by looking at the neural basis of within and between subject changes in speech fluency under 50 and 200 ms delay conditions. Using functional magnetic resonance imaging, networks involved in producing speech under two levels of DAF were identified, lying largely within networks active during normal speech production. Independent of condition, fluency ratings were associated with midbrain activity corresponding to periaqueductal grey matter. Across subject variability in ability to produce normal sounding speech under a 200 ms delay was associated with activity in ventral sensorimotor cortices, whereas ability to produce normal sounding speech under a 50 ms delay was associated with left inferior frontal gyrus activity. These data indicate whilst overlapping cortical mechanisms are engaged for speaking under different delay conditions, susceptibility to different temporal delays in speech feedback may involve different process

    Robert Provine: the critical human importance of laughter, connections and contagion

    Get PDF
    Robert Provine made several critically important contributions to science, and in this paper, we will elaborate some of his research into laughter and behavioural contagion. To do this, we will employ Provine's observational methods and use a recorded example of naturalistic laughter to frame our discussion of Provine's work. The laughter is from a cricket commentary broadcast by the British Broadcasting Corporation in 1991, in which Jonathan Agnew and Brian Johnston attempted to summarize that day's play, at one point becoming overwhelmed by laughter. We will use this laughter to demonstrate some of Provine's key points about laughter and contagious behaviour, and we will finish with some observations about the importance and implications of the differences between humans and other mammals in their use of contagious laughter. This article is part of the theme issue 'Cracking the laugh code: laughter through the lens of biology, psychology and neuroscience'

    Lexico-semantic and acoustic-phonetic processes in the perception of noise-vocoded speech: implications for cochlear implantation.

    Get PDF
    Noise-vocoding is a transformation which, when applied to speech, severely reduces spectral resolution and eliminates periodicity, yielding a stimulus that sounds "like a harsh whisper" (Scott et al., 2000, p. 2401). This process simulates a cochlear implant, where the activity of many thousand hair cells in the inner ear is replaced by direct stimulation of the auditory nerve by a small number of tonotopically-arranged electrodes. Although a cochlear implant offers a powerful means of restoring some degree of hearing to profoundly deaf individuals, the outcomes for spoken communication are highly variable (Moore and Shannon, 2009). Some variability may arise from differences in peripheral representation (e.g., the degree of residual nerve survival) but some may reflect differences in higher-order linguistic processing. In order to explore this possibility, we used noise-vocoding to explore speech recognition and perceptual learning in normal-hearing listeners tested across several levels of the linguistic hierarchy: segments (consonants and vowels), single words, and sentences. Listeners improved significantly on all tasks across two test sessions. In the first session, individual differences analyses revealed two independently varying sources of variability: one lexico-semantic in nature and implicating the recognition of words and sentences, and the other an acoustic-phonetic factor associated with words and segments. However, consequent to learning, by the second session there was a more uniform covariance pattern concerning all stimulus types. A further analysis of phonetic feature recognition allowed greater insight into learning-related changes in perception and showed that, surprisingly, participants did not make full use of cues that were preserved in the stimuli (e.g., vowel duration). We discuss these findings in relation cochlear implantation, and suggest auditory training strategies to maximize speech recognition performance in the absence of typical cues
    • …
    corecore